采煤方法图
主要内容和要求:
以实习矿井涡北煤矿条件为基础,完成涡北煤矿1.80Mt/a新井设计。主要内容包括:矿井概况、矿井工作制度及设计生产能力、井田开拓、首采区设计、采煤方法、矿井通风系统、矿井运输提升等。
结合煤矿生产前沿及矿井设计情况,撰写一篇关于高瓦斯矿井瓦斯抽放系统研究的专题。
完成与采矿有关的科技翻译一篇,题目为“Analytical models for rock bolts”, 3763字符。
摘要
本设计包括三个部分:一般设计部分、专题设计部分和翻译部分。
一般部分为涡北煤矿1.8 Mt/a的新井设计。涡北煤矿位于安徽省涡阳境内,交通十分便利。井田走向(南北)长平均约6 km,倾向(东西)长平均约3.2km,井田水平面积为19 km2。主采煤层两层,即81、82号煤层,平均倾角23°,平均厚度分别为3.96 m和8.70m。井田工业储量为233.60 Mt,可采储量126.60Mt,矿井服务年限为50.24 a。井田地质条件简单。表土层平均厚度32 m;矿井正常涌水量为420 m3/h,最大涌水量为860 m3/h;煤层硬度系数f=2~3,煤质牌号为JM;矿井绝对瓦斯涌出量为7.50m3/min,属低瓦斯矿井;煤层无自燃发火倾向,煤尘具有爆炸危险性。
根据井田地质条件,提出四个技术上可行开拓方案。方案一:立井两水平开采,暗斜
井延深,一水平设在-700 m,二水平设在-1000m;方案二:立井两水平开采,立井延深,一、二水平分别设在-700 m和-1000m;方案三:立井三水平开采,立井延伸,分别设在-600
m、-800m和-1000m;方案四:立井三水平开采,暗斜井延伸,分别设在-600 m、-800m和
-1000m。通过技术经济比较,最终确定方案一为最优方案。将主采煤层划分为两个水平,一水平标高-700 m,二水平标高-1000m。
设计首采区采用采区准备方式,工作面长度220 m,采用一次采全高采煤法,全部跨
落法处理采空区。矿井采用“四六”制作业,三班生产,一班检修。生产班每班2个循环,
日进6个循环,循环进尺0.6 m,日产量4233.66 t。
大巷采用带式输送机运煤,辅助运输采用架线式电机车牵引1.5 t固定箱式小矿车。主井装备两套20t异卸载多绳摩擦式双箕斗提煤,副井装备两套1.5t双层宽罐笼带平衡锤担负辅助运输任务。矿井采用中央并列式通风。通风容易时期矿井总需风量6673.8 m3/min,矿井通风总阻力996.2Pa,风阻0.061N·s 2/m8,等积孔4.80 m2,矿井通风容易。矿井通风困难时期矿井总风量6673.8 m3/min,矿井通风总阻力2799.77 Pa,风阻0.172 N·s 2/m8,等积孔2.86m2,矿井通风中等困难。设计矿井的工作面吨煤成本32元/t。
专题部分题目是高瓦斯矿井瓦斯抽放系统研究。
翻译部分是一篇关于锚杆的分析模型的,英文原文题目为:Analytical models for rock bolts。
关键词:立井;大采高;双巷掘进;中央并列式
ABSTRACT
This design can be divided into three sections: general design, monographic study and translation of an academic paper.
The general design is about a 1.8 Mt/a new underground mine design of Guobei coal mine. Guobei coal mine lies in Guoyang, Anhui province. The traffic is very convenient. It’s about6 km on the strike and 3.2 km on the dip, with the 19 km2 total horizontal area. The minable coal seam of this mine is 81 and 82 with an average thickness of 3.96 m and 8.70m. The average dip is 23°. The proved reserves of this coal mine are 233.60 Mt and the minable reserves are 126.60 Mt, with a mine life of 50.24 a. The geological condition of the mine is relatively simple. The normal mine inflow is 420m3/h and the maximum mine inflow is 860 m3/h. It is bituminous coal with low mine gas emission rate and no coal spontaneous combustion tendency, and it’s a coal seam liable to explosion.
Based on the geological condition of the mine, I bring forward four available project in technology. The first is vertical shaft development with two mining levels and the extension of inclined shaft from -700m to -1000 m; thr second is vertical shaft development with two mining levels and the extension of vertical shaft from -700m to -1000 m; the third is vertical shaft development with three mining levels(-600m、-800m、-1000m) and the extension of inclined shaft; the last is vertical shaft development with three mining levels(-600m 、 -800m 、 -1000m) and the extension of vertical shaft. The first project is the best comparing with other three project in technology and economy. The first level is at -700 m, and the second level is at -1000 m.
Designed first mining district makes use of the method of preparation in mining area, the length of working face is 220 m, which uses fully-mechanized coal mining technology, and fully caving method to deal with goaf. The working system is “four-sixt”,with three teams mining, and the other overhauling. Every mining team makes three working cycle, with six working cycle everyday. Advance of working cycle is 0.6 m, and quantity of 4233.66 ton coal is makedeveryday.
Main roadway makes use of belt conveyor to transport coal resource, and mine car to be assistant transport. Main shaft makes use of skip to transport coal resource, when subsidiary shaft makes use of cage to be assistant transport. In the prophase of mining the mine makes use of centralized ventilation method,when in the evening of mining the mine makes use of areas ventilation method. At the easy time of mine ventilation, the total air quantity is 6673.8 m3 per minute, the total mine ventilation resistance is 996.2 Pa, the coefficient of resistance is 0.061 N·s 2/m8, equivalent orifice is 4.80 m2. At the difficult time of mine ventilation, the total air quantity is about 6673.8 m3 per minute, the total mine ventilation resistance is 2799.77 Pa, the coefficient of resistance is 0.172 N·s 2/m8, equivalent orifice is 2.86 m2. The cost of the designed
mine face is 32 yuan per ton.
The monographic study is High-gas coal mine gas drainage system.
The translated academic paper is about Analytical models for rock bolts.
Keywords:shaft ; large mining height ; double thunnel drivage ; centralized juxtapose ventilation.
目录
一般设计部分
1井田概况及地质特征1
1.1.井田概况1
1.1.1.交通位置1
1.1.2.地貌水系1
1.1.3.气象1
1.1.4.地震1
1.1.5.矿区内工农业生产、建筑材料等概况1
1.1.6.区域电源2
1.1.7.水源2
1.2.地质特征3
1.2.1.地质构造3
1.2.2.煤层与煤质5
1.2.3.其它开采技术条件5
2井田境界和储量10
2.1.井田境界10
2.2.矿井工业储量10
2.2.1.勘查方法、勘查类型及勘查工作布置原则10
2.2.2.储量计算原则10
2.2.3.储量计算11
2.3.可采储量13
3矿井设计生产能力及服务年限15
3.1.矿井工作制度15
3.2.矿井设计生产能力及服务年限15
3.2.1.确定依据15
3.2.2.矿井设计生产能力15
3.2.3.矿井服务年限15
4井田开拓17
4.1.井田开拓的基本问题17
4.1.1.确定井筒形式、数目、位置及坐标17
4.1.2.工业场地的位置19
4.1.3.开采水平的确定及采盘区的划分19
4.1.4.主要开拓巷道19
4.1.5.方案比较19
4.2.矿井基本巷道24
4.2.1.井筒24
4.2.2.井底车场及硐室28
4.2.3.主要开拓巷道29
5准备方式——采区巷道布置33
5.1.煤层地质特征33
5.1.1.采区位置33
5.1.2.采区煤层特征33
5.1.3.煤层顶底板岩石构造情况33
5.1.4.水文地质33
5.1.5.地质构造33
5.2.采区巷道布置及生产系统33
5.2.1.采区准备方式的确定33
5.2.2.采区巷道布置34
5.2.3.采区生产系统35
5.2.4.采区内巷道掘进方法36
5.2.5.采区生产能力及采出率36
5.3.采区车场选型设计37
6采煤方法38
6.1.采煤工艺方式38
6.1.1.采区煤层特征及地质条件38
6.1.2.确定采煤工艺方式38
6.1.3.回采工作面参数38
6.1.4.回采工作面破煤、装煤方式39
6.1.5.回采工作面支护方式40
6.1.6.端头支护及超前支护方式42
6.1.7.各工艺过程注意事项43
6.1.8.回采工作面正规循环作业44
6.2.回采巷道布置46
6.2.1.回采巷道布置方式46
6.2.2.回采巷道参数46
7井下运输48
7.1.概述48
7.1.1.矿井设计生产能力及工作制度48
7.1.2.煤层及煤质48
7.1.3.运输距离和货载量48
7.1.4.矿井运输系统48
7.2.采区运输设备选择49
7.2.1.设备选型原则: 49
7.2.2.采区运输设备选型及能力验算49
7.3.大巷运输设备选择51
7.3.1.主运输大巷设备选择51
7.3.2.辅助运输大巷设备选择51
8矿井提升54
8.1.矿井提升概述54
8.2.主副井提升54
8.2.1.主井提升54
8.2.2.副井提升56
9矿井通风及安全58
9.1.矿井通风系统选择58
9.1.1.矿井概况58
9.1.2.矿井通风系统的基本要求58
9.1.3.矿井通风方式的确定58
9.1.4.主要通风机工作方式选择59
9.1.5.采区通风系统的要求60
9.1.6.工作面通风方式的选择60
9.1.7.回采工作面进回风巷道的布置61
9.2.矿井风量计算61
9.2.1.工作面需风量计算61
9.2.2.备用面需风量的计算62
9.2.3.掘进工作面需风量62
9.2.4.硐室需风量63
9.2.5.其它巷道所需风量64
9.2.6.矿井总风量64
9.2.7.风量分配64
9.3.矿井阻力计算65
9.3.1.矿井最大阻力路线65
9.3.2.矿井通风阻力计算66
9.3.3.矿井通风总阻力67
9.3.4.两个时期的矿井总风阻和总等积孔68
9.4.选择矿井通风设备69
9.4.1.选择主扇69
9.4.2.电动机选型70
9.5.安全灾害的预防措施70
9.5.1.预防瓦斯和煤尘爆炸的措施70
9.5.2.预防井下火灾的措施71
9.5.3.防水措施71
10设计矿井基本技术经济指标73
专题部分
高瓦斯矿井瓦斯抽放系统研究75
摘要75
1.绪论75
10.1.瓦斯及瓦斯事故75
10.2.瓦斯灾害的治理对策76
10.3.国内外研究现状76
2.瓦斯赋存及运移规律分析77
2.1.瓦斯吸附解吸特征77
2.2.瓦斯在煤层中的运移规律78
2.3.瓦斯在煤层中的流动规律78
3.瓦斯抽放方法79
3.1.抽放瓦斯原则79
3.2.影响瓦斯抽放方法选择的因素80
3.3.瓦斯抽放方法的抽放率及其适用条件80
4.影响抽放管网系统的抽放效果的因素81
4.1.国内矿井瓦斯抽放率低的原因分析81
4.2.提高矿井瓦斯抽放率的途径83
5.抽放管网系统的优化管理技术89
5.1.矿井抽放系统的可行性分析89
5.2.积极改造抽放系统提高系统能力90
5.3.建立合理有效的瓦斯抽放管路监测系统91
5.4.建立合理有效的管理制度92
6.结论与展望94
6.1.结论94
6.2.前景展望94
翻译部分
ANALYTICAL MODELS FOR ROCK BOLTS 96
Abstract 96
1.Introduction 96
2.Coupling between the bolt and the rock 98
3.Concluding remarks 98
锚杆的分析模型99
摘要: 99
1、前言99
2、锚杆和岩石的联结100
3、结论101
参考文献102
致谢103
字数统计
采区巷道布置刨面图
设计所包含文件
开拓刨面图
开拓平面图
采区巷道布置平面图