loading
刷新页面 加入收藏夹

涡北煤矿1.5Mta新井设计含5张CAD图-采矿工程+说明书

图片展示附件预览 2020-01-13 文件列表浏览 下载 收藏已收藏 报告错误 手机访问 [复制链接]

涡北煤矿1.5Mta新井设计含5张CAD图-采矿工程+说明书

采煤方法图

涡北煤矿1.5Mt/a新井设计
深部巷道锚杆支护技术
摘要
本设计包括三个部分:一般部分、专题部分和翻译部分。
一般部分为涡北煤矿1.50 Mt/a新井设计。涡北煤矿位于安徽省亳州市境内,东有京九铁路,西有濉阜铁路,交通便利。井田走向长度约6.30 km,倾向长度约2.46 km,面积约14.49 km2。主采煤层为8号煤层,平均倾角为18°,平均厚度为10.0 m。井田工业储量为190.806 Mt,可采储量为104.255Mt,矿井服务年限为53.46a。矿井正常涌水量为250 m3/h,最大涌水量为280 m3/h。矿井绝对瓦斯涌出量为21.3 m3/min,属于低瓦斯矿井。
根据井田地质条件,提出四个技术上可行的开拓方案。方案一:立井两水平开拓上山开采,暗斜井延深;方案二:立井两水平开拓上山开采,立井直接延深;方案三:立井两水平开拓上下山开采,暗斜井延深;方案四:立井两水平开拓上下山开采,立井直接延深。通过技术经济比较,最终确定方案一为最优方案。一水平标高-700 m,二水平标高-1000 m。
设计首采区采用采区准备方式,工作面长度160 m,采用综采放顶煤采煤法,矿井年工作日为330 d,工作制度为“三八制”。
大巷采用胶带输送机运煤,辅助运输采用矿车运输。矿井通风方式为中央并列式。
专题部分题目:深部巷道锚杆支护技术。我国国有大中型煤矿开采深度每年约以8~12 m的速度向深部增加,一些老矿区和缺煤矿区相继进入深部开采阶段。由于开采深度的加大,岩体应力急剧增加,地温升高,巷道围岩破碎严重,塑性区、破碎区范围很大,蠕变严重。采用工字钢、架棚等被动支护技术已不能有效的控制巷道的变形,采用高强度全长树脂锚固锚杆锚固力大、锚固及时,能主动地将支撑载荷作用到巷道周边,对围岩施加径向力,加强巷道或硐室周边围岩稳定性,充分发挥围岩的自身承载能力,取得了良好的支护效果。
翻译部分题目:The performance of pressure cells for sprayed concrete tunnel linings。喷射混凝土巷道应力测量仪的性能。
关键词:立井;暗斜井;采区布置;放顶煤采煤法;中央并列式;锚杆支护
ABSTRACT
This design can be divided into three sections: general design, monographic study and translation of an academic paper.
The general design is about a 1.50 Mt/a new underground mine design of Wobei coal mine. Wobei coal mine lies in Hozhou City, Anhui province. As Jingjiu railway runs in the west of the mine field and Suifu railway runs in the east of the mine field, the traffic is convenient. It’s about 6.30 km on the strike and 2.46 km on the dip, with the 14.49 km2 total horizontal area. The minable coal seam is 8 with an average thickness of 10.0 m and an average dip of 18°.The proved reserves of this coal mine are 190.806 Mt and the minable reserves are 104.255 Mt, with a mine life of 53.46 a. The normal mine inflow is 250 m3/h and the maximum mine inflow is 280 m3/h. The mine gas emission rate is 21.3 m3/min, the mine belongs to low gas mine.
Based on the geological conditions of the mine, I bring forward four available projects in technology. The first is vertical shaft development with two mining levels and the first level at -700m and the second level at -1000m and extension of blind inclined shaft; the second is vertical shaft development with two mining levels and the first level at -700m and the second level at -1000m and extension of vertical shaft; the third is vertical shaft development with two mining levels and the first level at -700m and the second level at -850m and extension of blind inclined shaft; the last is vertical shaft development with two mining levels and the first level at -700m and the second level at -850m and extension of vertical shaft. The first project is the best comparing with other three projects in technology and economy. The first level is at -700 m and the second level is at -1000 m.
Designed first mining district makes use of the method of the mining district preparation. The length of working face is 160 m, which uses fully-mechanized coal caving mining method. The working system is “three-eight” which produces 330 d/a.
Main roadway makes use of belt conveyor to transport coal resource, and mine car to be assistant transport. The type of mine ventilation system is center ventilation.
The title of monographic study is technology of deep roadway bolt supporting. China's State-owned large and medium-sized coal mine mining depth of about 8~12 m a year increase in speed to the deep, deficiency in some old mining area and entered the stage of deep mining in coal mining area. With the mining depth increasing, the stress in rock mass increases quickly, temperature rises, the rock surrounding roadway breaks seriously and the broken plastic area has a large range and creep seriously. Using passive support nurse technology, for example jacked, frame shed and so on, has cannot control the deformation of roadway effectively. Using high strength and full length resin bolt which has large anchorage and anchorage timely can active to make supporting load to roadway around, impose radial force to surrounding rock and strengthen the stability of roadway or surrounding rock around chamber room, which can give full play to the hosted ability of surrounding rock and has made a good support nurse effect.
The translated academic paper is The performance of pressure cells for sprayed concrete tunnel linings.
Keywords: Vertical shaft; Blind inclined shaft; Mining district preparation; Coal caving mining ; Center ventilation; Bolt supporting

目录
一般部分
1矿区概述及井田地质特征1
1.1矿区概述1
1.1.1交通位置1
1.1.2地貌水系1
1.1.3气象1
1.1.4地震2
1.1.5矿区内工农业生产、建筑材料等概况2
1.1.6区域电源2
1.1.7水源2
1.2井田地质特征2
1.2.1井田地质构造2
1.2.2水文地质4
1.2.3地质勘探程度8
1.3煤层特征8
1.3.1煤层8
1.3.2煤层顶、底板9
1.3.3煤质9
1.3.4瓦斯10
1.3.5煤尘及煤的自燃10
2井田境界和储量11
2.1井田境界11
2.1.1井田境界及确定依据11
2.1.2井田尺寸11
2.2矿井工业储量11
2.2.1井田地质勘探11
2.2.2储量计算基础12
2.2.3矿井地质储量计算12
2.2.4矿井工业储量计算13
2.3矿井可采储量14
2.3.1工业广场保护煤柱14
2.3.2矿井设计储量14
2.3.3矿井设计可采储量15
3井田境界和储量16
3.1矿井工作制度16
3.2矿井设计生产能力及服务年限16
3.2.1确定依据16
3.2.2矿井设计生产能力16
3.2.3矿井服务年限16
3.2.4井型校核17
4井田开拓18
4.1井田开拓的基本问题18
4.1.1确定井筒形式、数目、位置18
4.1.2工业场地的位置19
4.1.3阶段划分及开采水平的确定19
4.1.4主要开拓巷道20
4.1.5矿井开拓延深20
4.1.6方案比较20
4.2矿井基本巷道27
4.2.1井筒27
4.2.2井底车场及硐室27
4.2.3主要开拓巷道34
5准备方式—采区巷道布置37
5.1煤层地质特征37
5.1.1采区位置37
5.1.2采区煤层特征37
5.1.3煤层顶底板岩石构造情况37
5.1.4水文地质37
5.1.5主要地质构造37
5.1.6地表情况37
5.2采区巷道布置及生产系统37
5.2.1采区范围及区段划分37
5.2.2煤柱尺寸的确定38
5.2.3采煤方法及首采工作面工作面长度的确定38
5.2.4确定采区各种巷道的尺寸、支护方式38
5.2.5采区巷道的联络方式38
5.2.6采区接替顺序38
5.2.7采区生产系统38
5.2.8采区内巷道掘进方法39
5.2.9采区生产能力及采出率39
5.3采区车场选型设计40
6采煤方法42
6.1采煤工艺方式42
6.1.1采区煤层特征及地质条件42
6.1.2确定采煤工艺方式42
6.1.3回采工作面参数42
6.1.4回采工艺及设备43
6.1.5回采工作面支护方式45
6.1.6端头支护及超前支护方式47
6.1.7各工艺过程注意事项47
6.1.8回采工作面正规循环作业48
6.2回采巷道布置51
6.2.1回采巷道布置方式51
6.2.2回采巷道参数51
7井下运输54
7.1概述54
7.1.1井下运输设计的原始条件和数据54
7.1.2运输距离和货载量54
7.1.3矿井运输系统54
7.2采区运输设备选择55
7.2.1设备选型原则55
7.2.2采区运输设备的选型55
7.3大巷运输设备选择56
7.3.1运输大巷设备选择56
7.3.2辅助运输大巷设备选择56
8矿井提升58
8.1概述58
8.2主副井提升58
8.2.1主井提升58
8.2.2副井提升60
9矿井通风及安全62
9.1矿井地质、开拓、开采概况62
9.1.1矿井地质概况62
9.1.2开拓方式62
9.1.3开采方法62
9.1.4变电所、充电硐室、火药库62
9.1.5工作制、人数62
9.2矿井通风系统的确定62
9.2.1矿井通风系统的基本要求62
9.2.2矿井通风方式的选择63
9.2.3矿井通风方法的选择63
9.2.4采区通风系统的要求64
9.2.5工作面通风方式的确定64
9.2.6回采工作面进回风巷道的布置65
9.3矿井风量计算65
9.3.1矿井风量计算方法概述65
9.3.2回采工作面风量计算66
9.3.3掘进工作面风量计算67
9.3.4硐室需要风量的计算68
9.3.5其他巷道所需风量68
9.3.6矿井总风量计算68
9.3.7风量分配69
9.4矿井通风阻力69
9.4.1确定矿井通风容易时期和困难时期69
9.4.2矿井通风容易时期和困难时期的最大阻力路线72
9.4.3矿井通风阻力计算72
9.4.4矿井通风总阻力72
9.4.5矿井总风阻及总等积孔74
9.5矿井通风设备选型75
9.5.1通风机选择的基本原则75
9.5.2通风机风压的确定75
9.5.3电动机选型78
9.5.4矿井主要通风设备的要求79
9.5.5对反风装置及风硐的要求79
9.6特殊灾害的预防措施79
9.6.1预防瓦斯和煤尘爆炸的措施79
9.6.2预防井下火灾的措施80
9.6.3防水措施80
10设计矿井基本技术经济指标81
参考文献82
专题部分
深部巷道锚杆支护技术84
1引言84
2开采深度与巷道围岩的变形关系84
2.1中国的研究84
2.2德国的研究84
2.3前苏联的研究85
3深井巷道锚杆支护的关键理论与技术86
3.1深井巷道锚杆支护理论基础86
3.2深部巷道锚杆支护作用机理87
3.3深部巷道锚杆支护技术91
4工程实例95
4.1巷道地质及生产条件95
4.2地应力测量96
4.3巷道围岩稳定性分类及计算机辅助设计96
4.4巷道支护设计96
4.5支护质量监测98
4.6支护效果和经济效益分析102
5结论102
参考文献104
翻译部分
英文原文106
The performance of pressure cells for sprayed concrete tunnel linings 106
Introduction 106
Factors affecting the pressures recorded by tangential pressure cells 106
Cell properties 106
Installation effects 107
Post-installation factors 107
Numerical and physical experiments, and results from monitoring 107
Numerical modelling to assess the effects of cell fluid 107
Physical simulation 109
Discussion 112
Conclusions 113
Acknowledgements 113
中文译文115
喷射混凝土巷道应力测量仪的性能115
1前言115
2切向测力仪测量巷道应力的影响因素115
2.1测力仪特性115
2.2安装影响115
2.3安装后的影响因素115
3数字模拟与物理实验和检测结果116
3.1数字模拟实验评估压力计流体的影响116
3.2物理模拟实验117
4讨论120
5结论120
6鸣谢121
致谢122

字数统计

字数统计

井田境界和储量

井田境界和储量

设计所包含文件

设计所包含文件

开拓剖面图

开拓剖面图

巷道布置剖面图

巷道布置剖面图

开拓平面图

开拓平面图

巷道布置平面图

巷道布置平面图

申明:内容来自用户上传,著作权归原作者所有,如涉及侵权问题,请与我们联系,我们将及时处理!

评论及评价 如果您已下载,请选择星级评价并提交评论
    loading