电池箱总装A0
摘要
为了解决传统内燃机汽车所面临的石油紧缺、排放污染等问题,纯电动汽车的研究变得十分重要。而电池作为纯电动汽车的所有动力来源,其在车上的安放由电池箱承担。因此,需要根据车型设计空间、强度、刚度以及其他所需性能均满足的电池箱。
本文针对某款纯电动商用车,根据性能参数计算所需电池参数为180组串联、两组并联,应用CATIA三维建模软件设计一款电池箱,并通过ANSYS Workbench软件分析在急刹车、急转弯和颠簸工况下,电池箱的应力与应变,得到的结果均在材料的许用应力范围内。然后改变电池箱的材料,采用环氧树脂基碳纤维预浸料和蜂窝铝板所组成的复合材料层合板,应用ACP(Pre)对复合材料进行铺层。将铺层好的模型再次进行相同工况下的分析,所得箱体质量减小49.84%,并且在急刹车、急转弯工况下,最大应力值分别减小了73.61%、95.81%,并且复合材料未发生失效。对于减轻电池箱质量具有一定参考意义。
关键词:电动汽车;电池箱;有限元分析;复合材料
Abstract
Because of oil shortage and emission pollution, traditional internal combustion engine vehicles are facing big problems. Therefore, the research and wide application of pure electric vehicles have become very important recently. As the source of all power for a pure electric vehicle, the placement of the batteries on the car is borne by the battery box. Therefore, it is necessary to design a battery box that meets the space, strength, rigidity, and other required performances according to the vehicle model.
In this paper, for a pure electric commercial vehicle, the required battery parameters are calculated according to the performance parameters as 180 sets in series and two sets in parallel. A battery box is designed using CATIA 3D modeling software, and analyzed by ANSYS Workbench software during sudden braking and sharp turns. Under this working conditions, the stress and strain of the battery box have not exceeded the allowable stress range of the material. Then change the material of the battery box, adopt the composite material laminated board composed of epoxy resin-based carbon fiber prepreg and honeycomb aluminum plate, and apply ACP (Pre) to laminate the composite material. The layered model was analyzed again under the same working conditions, and the mass of the resulting box was reduced by 49.84%, and the maximum stress values were reduced by 73.61% and 95.81% under the conditions of sudden braking and sharp turns, respectively the material has not failed. It has certain reference significance for reducing the quality of the battery box.
Key Words:electric vehicle; battery box; finite element analysis; composite materials
目录
第一章绪论1
1.1选题背景及研究意义1
1.2国内外研究概况3
1.2.1改进电池箱结构的研究现状3
1.2.2改进电池箱材料的研究现状3
1.3主要研究内容4
1.3.1研究的基本内容与目标4
1.3.2拟采用的技术方案及措施4
第二章电池参数计算6
2.1汽车相关参数6
2.2根据动力性指标计算7
2.3选择电机7
2.4电池组参数计算9
第三章电池箱设计11
3.1动力电池布置形式11
3.2动力电池的位置布置11
3.3电池箱结构设计12
3.3.1电池箱盖设计12
3.3.2电池箱体设计12
3.4电池箱散热结构13
3.5总体装配14
第四章电池箱有限元分析16
4.1有限元基本思想16
4.2建立电池箱有限元模型16
4.2.1材料的选择与定义16
4.2.2网格与连接单元17
4.3静力学分析18
4.3.1载荷和约束18
4.3.2强度计算结果及分析18
第五章电池箱的轻量化21
5.1轻量化的必要性21
5.2复合材料21
5.2.1复合材料概述21
5.2.2常用的复合材料及其特点22
5.3进行分析的前处理23
5.3.1建立电池箱面的有限元模型24
5.3.2材料铺层25
5.4改变材料后的有限元分析28
5.4.1载荷与约束28
5.4.2强度及失效情况计算结果与分析28
第六章总结与展望32
6.1总结32
6.2展望32
参考文献33
附录A 35
附A1电机功率与转矩的计算35
致谢36
第一章绪论
1.1选题背景及研究意义
自改革开放以来,随着我国的经济和科的发展速度越来越快、互联网以及国际交流的深入,我国已经逐步成为世界上最大的汽车生产销售市场国。汽车的发展虽然促进了我国社会政治经济的发展、提高了人民生活水平,但同时也带来了大气污染、能源枯竭等一系列急需解决的严肃问题[1]。
减重后下箱体A1
冷却板A2
下箱体与隔板装配A1
箱盖A2