三维总装图
[摘要]在行星齿轮机构中行星轮上的点的轨迹形态十分多样,已在实现准确直线、近似直边正多边形零件加工、近似停歇机构的设计与规则图案设计上得到广泛应用。在粉体的制备过程中,特别是在研磨的过程中,是一个既耗费时间又耗费能量的过程。因此研磨效率的高低就成为粉体制备的关键因素。搅拌磨机是目前制备粉体材料的一种高效率设备,在材料、食品、医药保健品、石油化工、冶金、涂料、化妆品、高级陶瓷、陶瓷釉料、磁性材料等行业中得到广泛应用,行星齿轮传动机构具有可靠性高、功能性强、结构紧凑、单级传动比大、承载能力强、效率高等一些优点,将其应用于搅拌球磨机中,根据不同被粉碎物料的材料,可以选择相应的搅拌器形状及其转速,使得被搅拌粉碎物料形成一种复杂的运动轨迹,搅拌、粉碎覆盖区域大、空白区孝作用剧烈,可以较大程度的改善搅拌球磨机性能,显着提高物料搅拌粉碎效率。
[关键词]搅拌磨行星轮搅拌设备
[Abstract]The locus of points in the planetary gear mechanism of planetary wheel shape is very rich, has been in achieving accurate linear approximate straight regular polygon, parts processing, approximately mechanism has been applied on the rules of design and pattern design.Powder preparation process, especially in the process of grinding, is a time-consuming and energy-consuming process.Thus the grinding efficiency of became a key factor of the preparation of powder.Preparation of nano-powder material mixing mill is a kind of efficient equipment, has been in materials, food, medicine, health care products, oil chemical industry, metallurgy, coating, cosmetics, advanced ceramics, ceramic glaze, is widely used in magnetic materials and other industries, planetary gear transmission mechanism has high reliability, functional, compact structure, single stage gear ratio big, strong carrying capacity, higher efficiency, applied to the mixing mill, according to different kinds of crushed material, choose the corresponding geometry and rotation speed of the mixer made by mixing crushed material to form a complex trajectory, mixing, crushing cover large area, a blank area of small, violently, can largely improve mixing performance of the ball mill, significantly improve the efficiency of material mixing crushed.
[Key words] mixing mill,Planetary wheel, mixing equipment
目录
第一章行星轮式搅拌磨的介绍5
1.1行星轮式搅拌磨的设计与分析5
1.2行星轮式搅拌磨的基本结构6
图1.2. 2 7
1.3行星轮式搅拌磨的工作原理7
第二章行星轮式搅拌磨罐体部分设计计算9
2.1罐体的尺寸确定及结构选型9
2.1.1筒体及封头型式9
选择圆柱形筒体,底部采用平底焊接。该结构在设计中采用的较多。 9
2.1.2确定内筒体的直径[3] 9
2.2校核传热面积[3] 10
2.3内筒体及夹套的壁厚计算10
第三章传动方式及电机选型13
3.1传动方案的简单介绍13
3.2搅拌方式的介绍和选择13
3.3搅拌磨所需总功率的计算14
3.4搅拌器选型15
3.5搅拌功率的计算[2] 16
3.6减速机及电动机的选择[9] 18
第四章传动齿轮与轴的设计20
4.1齿轮的设计计算[9] 20
4.2齿轮的结构形式设计20
图4.2.2 22
4.3按齿轮的弯曲强度校核[9] 22
4.4计算齿轮所受的力23
4.5行星齿轮传动的设计[9] 23
4.5.1行星齿轮转动的设计23
4.5.2行星齿轮传动的设计原理24
4.5.3齿轮材料、热处理工艺及制造工艺的选定24
4.6确定行星齿轮传动的各项参数25
4.6.1传动效率的计算25
4.6.2各齿轮的转矩与转速25
4.6.3行星轮数目25
4.6.4行星轮系各轮齿数的确定[9] 25
4.6.5行星轮系传动比的计算28
4.6.6齿轮分度圆与模数并校核28
4.6.7齿轮结构设计30
第五章传动轴的设计及校核31
5.1轴设计的主要内容31
5.2轴的材料选择31
5.3最大扭矩的计算及轴径的确定31
5.4主传动轴强度校核32
5.5搅拌轴强度校核34
5.6校核搅拌轴的钢度35
第六章键与轴承的选择36
6.1键连接的功能、结构形式及应用36
6.2键的尺寸的选择36
6.3轴承的简介37
6.4轴承的选择37
6.4.1求比值37
6.4.2计算当量载荷37
6.4.3求轴承应有的基本额定动载荷值37
6.4.4轴承的选型37
6.5轴承寿命的校核38
参考文献39
A总装图
设计目录
设计所包含文件
摘要部分
字数统计
带颈承插焊法兰
带颈承插焊法兰2
搅拌驱动轴
行星齿轮
申明:内容来自用户上传,著作权归原作者所有,如涉及侵权问题,请与我们联系,我们将及时处理!